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1 Introduction

HyperSAT is a DPLL solver with a new search
space pruning technique based on the theory of B-
Cubing [3, 2, 1], powerful preprocessing, and stan-
dard 1-UIP learning [10]. The core of the solver is
based on a simple watched literal scheme as imple-
mented in LIMMAT [4], with some minor optimiza-
tions and extended to support equivalence clauses.

The decision heuristic is fairly complex. The solver
keeps counters for each literal. Counters are incre-
mented by certain values, depending on the prop-
erties of the literal and the conflict, and frequently
scaled (every 300 conflicts). The priority of each vari-
able is computed according to the following heuristic
function:

8 abs (pos (v) — neg (v))
+(pos (v) + 1)(neg (v) + 1)

pri(v) =

Literal counters are accessed through the pos () and
neg () functions. The first term rewards variables
that more frequently appear in conflicts with only
one phase. Such asymmetry can lead to a quick con-
flict detection. Variables that are present in many
clauses often represent a good choice for a decision,
so the second term greedily increases the priority of
such variables.

Once the variable has been selected for a case
split (decision), the solver picks the phase that cor-
responds to the literal with a smaller counter value.
This tends to increase the number of implications and
the probability of discovering a conflict.

2 B-Cubing
Intuitively, a SAT solver works by case-splitting: it
decides to assign a value to a variable, checks to see
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if the resulting subproblem is satisfiable, and if not,
tries the other assignment. This case-splitting natu-
rally corresponds to a search tree that considers all
possible assignments to the variables (Fig. 1).
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Figure 1: In B-Cubing, information from the left sub-
tree is used in the right subtree.

For B-Cubing, we develop a framework that allows
new kinds of pruning information. In the general
framework, a node in the search tree inherits from its
parent the obligation to prove a part of the search
space unsatisfiable. When it is done, it will return
to its parent some sort of certificate that a (possi-
bly larger) part of the search space was indeed un-
satisfiable. New pruning opportunities arise at the
node, because the certificates returned from explor-
ing one branch can be combined with the obligations
inherited from above to be used in pruning the other
branch. An advantage of keeping some pruning in-
formation local to a node is that the solver can per-
form pruning that is only applicable locally (or, al-
ternatively, that the solver need not store the context
information to determine exactly when the pruning
information is usable, since the context is implicit in
the search tree). Furthermore, the pruning informa-
tion can be discarded when it is no longer needed.

B-Cubing requires different backtracking mecha-
nism (as explained in [3]). Instead of indirectly flip-
ping 1-UIP literal through assertion clauses, as in
ZChaff [7], the solver backtracks to the last decision
that was involved in at least one conflict and con-
tains a non-conflicting list of scheduled implied liter-
als. Scheduled implied literals are literals that would



have been implied at the corresponding decision level
if the solver behaved like ZChaff.

3 Preprocessing

The solver can also handle equivalence clauses of the
form (a1 < a2 < -+ < a,). Equivalence clauses are
discovered during the preprocessing phase. The pre-
processing loop repeats application of the pure literal
rule [5], detection and propagation of binary equiva-
lences, propagation of unit literals [9], elimination of
duplicate clauses, limited ground resolution, equiva-
lence reasoning, and detection of tautologies as long
as there are any changes to the original formula. The
procedure is guaranteed to terminate as each pass
reduces the size of the original formula.

Binary equivalence propagation is based on a graph
algorithm that records all binary equivalences and de-
tects inconsistencies in the theory. All binary equiv-
alences detected in one pass are represented as a
graph. Two types of edges represent positive and
negative equivalences. The algorithm then finds a
representative of each equivalence class and replaces
all other variables in the class. Duplicate clauses
that are found in the original formula or generated in
the simplification loop are eliminated after each pass.
Limited ground resolution infers clause (A4) from two
clauses of type (AV a) and (AV a). Equivalence rea-
soning and tautology clauses are handled in a similar
way as in March [8, 6].

4 Learning

Learned clauses correspond to 1-UIP cuts in the im-
plication graph [10]. When the clause cache becomes
full, about half of the clauses are deleted, and the size
of the cache is increased by a small monotonically de-
creasing percentage. The maximum size of the cache
has been set to 219 clauses. Clauses in the cache are
sorted by participation in conflicts and length. The
longer and less used a clause is, the more likely it is
to be deleted.

5 Restarts

The basic version of HyperSAT is not randomized
and never restarts, but randomized restarts were
added in HyperSAT-RR version as an attempt to
increase the robustness of our solver. In order to
prevent unneeded restarts, the solver tracks its own
progress. There are two progress metrics, one corre-
sponds to the first decision level at which some deci-

sion variable has been explored with both phases and
the second is a signature that roughly corresponds to
the size of the search space that has been searched.
If there is progress being made according to the first
metric, the solver will not restart, otherwise it will
inspect the second metric. If there is no progress ei-
ther, it will restart. Depending on how much search
space has been explored, the solver will occasionally
restart even if there is some progress according to the
second metric. The closer to the solution the solver
thinks it is, the smaller the probability of restarting.
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