Malware Analysis with Tree Automata Inference*

Domagoj Babi¢, Daniel Reynaud, and Dawn Song

University of California, Berkeley
{babic, reynaud, dawnsong}@cs.berkeley.edu

Abstract. The underground malware-based economy is flourishing anckit-
ident that the classical ad-hoc signature detection methoelbecoming insuffi-
cient. Malware authors seem to share some source code amgmaamples
often feature similar behaviors, but such commonalities difficult to detect
with signature-based methods because of an increasingf usen@rous freely-
available randomized obfuscation tools. To address thoblem, the security
community is actively researching behavioral detectiothmes that commonly
attempt to understand and differentiate how malware behageopposed to just
detecting syntactic patterns. We continue that line ofasgein this paper and
explore how formal methods and tools of the verificationéraduld be used for
malware detection and analysis. We propose a new approdéehrtong and gen-
eralizing from observed malware behaviors based on tresrait inference. In
particular, we develop an algorithm for inferrifkgtestable tree automata from
system call dataflow dependency graphs and discuss the irderoéd automata
in malware recognition and classification.

1 Introduction

Over the last several decades, the IT industry advancedsalevery aspect of our
lives (including health care, banking, traveling,...) andustrial manufacturing. The
tools and techniques developed in the computer-aided cegidh community played
an important role in that advance, changing the way we desigtems and improving
the reliability of industrial hardware, software, and oratls.

In parallel, another community made a lot of progress exiplpisoftware flaws for
various nefarious purposes, especially for illegal finahgain. Their inventions are
often ingenious botnets, worms, and viruses, commonly knagsmalware Malware
source code is rarely available and malware is regularligdes so as to thwart static
analysis through the use of obfuscation, packing, and gtiory[34].

* This material is based upon work partially supported by th&dwal Science Foundation un-
der Grants No. 0832943, 0842694, 0842695, 0831501, 042442the Air Force Research
Laboratory under Grant No. P010071555, by the Office of NResearch under MURI Grant
No. N000140911081, and by the MURI program under AFOSR Graldt. FA9550-08-1-
0352 and FA9550-09-1-0539. The work of the first author is algpported by the Natural
Sciences and Engineering Research Council of Canada Pbwsaip.

0 The full version of this paper, the inference engine souctkecall dependency graphs used in
this paper, and a brief explanation of the file format, ardlabke at http://www.domagoj.info/

For the above mentioned reasons, detection, analysis, lassification of mal-
ware are difficult to formalize, explaining why the verifimat community has mostly
avoided, with some notable exceptions (e.g., [8, 18]), teblem. However, the area is
in a dire need of new approaches based on strong formal undergs, as less princi-
pled techniques, like signature-based detection, areni@gansufficient. Recently, we
have been experiencing a flood of malware [31], while themeegample of Stuxnet
(e.g., [27]) shows that industrial systems are as vulnerablour every-day computers.

In this paper, we show how formal methods, more precised/dtgomata inference,
can be used for capturing the essence of malicious behagiodshow such automata
can be used to detect behaviors similar to those observedgdilre training phase.
First, we execute malware in a controlled environment toaettdataflow dependen-
cies among executed system callgqcall$ using dynamic taint analysis [5,29]. The
main way for programs to interact with their environmenhisugh syscalls, which are
broadly used in the security community as a high-level aloion of software behav-
ior [13, 23, 32]. The dataflow dependencies among syscatishearepresented by an
acyclic graph, in which nodes represent executed sysealtsthere is an edge between
two nodes, sag; andsy, when the result computed Isy (or a value derived from it) is
used as a parameter®f Second, we use tree automata inference to learn an automato
recognizing a set of graphs. The entire process is complatebmated.

The inferred automaton captures the essence of differeltiowes behaviors. We
show that we can adjust the level of generalization with glsitunable factor and how
the inferred automaton can be used to detect likely maliclehaviors, as well as for
malware classification. We summarize the contributionaufpaper as follows:

— Expansion of dependency graphs into trees causes expali#otvup in the size of
the graph, similarly as eager inlining of functions duritatie analysis. We found
that a class of tree languages, nametgstable tree languages [35] can be inferred
directly from dependency graphs, avoiding the expansidrets.

— We improve upon the prior work on inferencelefestable tree languages by pro-
viding an & (kN) algorithm, wherek is the size of the pattern amdis the size of
the graph used for inference.

— We show how inferred automata can be used for detecting/likallicious behav-
iors and for malware classification. To our knowledge, thibe first work applying
the theory of tree automata inference to malware analygpMvide experimental
evidence that our approach is both feasible and useful ictipea

— While previous work (e.g., [7, 13]) often approximated degencies by syntactic
matching of syscall parameters, we implemented a tool émking dependencies
via taint analysis [5, 29] and we made the generated depegpdgaphs, as well as
the tree automata inference engine, publicly availabletmarage further research.

2 Related Work

Tree Automata InferenceGold [17] showed that no super-finite (contains all finite
languages and at least one infinite) is identifiable in thét lirmm positive examplé's

1 positive examples are examples belonging to the languale iaferred, while negative ex-
amples are those not in the language.

only. For instance, regular and regular tree languages§3aper-finite languages. We
have two options to circumvent this negative result; eitlserboth positive and negative
examples, or focus on less expressive languages that antffimlde in the limit from
positive examples only. Inference of minimal finite statéoawata from both positive
and negative examples is known to be NP-complete [17]. Thergg community is
discovering millions of new malware samples each year afedring a single minimal
classifier for all the samples might be infeasible. Infegrannon-minimal classifier is
feasible, but the classifier could be too large to be usefptaatice. Thus, we focus on
a set of languages identifiable in the limit from positiveraydes in this paper.

A subclass of regular tree languagesk-testable tree languages [35] — is identifi-
able in the limit from positive examples only. These langsagre defined in terms of a
finite set ofk-level-deep tree patterns. Théactor effectively determines the level of ab-
straction, which can be used as a knob to regulate the ratadsaf positives (goodware
detected as malware) and false negatives (undetected realWae patterns partition
dependency graphs into a finite number of equivalence dasghkicing a state-minimal
automaton. The automata inferred from positive (malwaxe)rles could be further
refined using negative (goodware) examples. Such a refinésnamceptually simple,
and does not increase the inference complexity, becau$e girbperties ok-testable
tree languages. We leave such a refinement for future work.

A number of papers focused &rtestable tree automata inference. Garcia and Vidal
[15] proposed aw’ (kPN) inference algorithm, wherleis the size of the patteri, the
total number of possible patterns, addhe size of the input used for inference. Many
patterns might not be present among the training sampleattser than enumerating all
patterns, [14] and [22] propose very similar algorithmd tise only the patterns present
in the training set. Their algorithms are somewhat complémplement as they require
computation of three different sets (called roots, forks] &aves). Their algorithms
are0 (M"N Iog(N)), whereM is the maximal arity of any alphabet symbol in the tree
language. We derive a simpler algorithm, so that computinksfand leaves becomes
unnecessary. The complexity of our algorithmZigkN), thanks to an indexing trick
that after performing iterations over the training sample builds an index for firgdi
patterns in the training set. Patterns in the test set canda¢dd in the index table in
amortized time linear in the size of the pattern. In our aggilon — malware analysis
— thek factor tends to be smalk(5), so our algorithm can be considered linear-time.

Malware Analysis. From the security perspective, several types of malwaréysisa
are interesting: malware detection (i.e., distinguishiradware from goodware), classi-
fication (i.e., determining the family of malware to whicharficular sample belongs),
and phylogeny (i.e., forensic analysis of evolution of me@&vand common/distinctive
features among samples). All three types of analyses adedar practice: detection
for preventing further infections and damage to the inféctemputers, and the other
two analyses are crucial in development of new forms of ptair, forensics, and at-
tribution. In this paper, we focus on detection and clasHifi.

The origins of the idea to use syscalls to analyze softwanebeatraced to For-
rest et al. [12], who used fixed-length sequences of sysfm@ligtrusion detection.
Christodorescu et al. [7] note that malware authors coukdlyeacorder data-flow-
independent syscalls, circumventing sequence-detestbames, but if we analyze

data-flow dependencies among syscalls and use such depgrgtaphs for detec-
tion, circumvention becomes harder. Data-flow-dependgstdadls cannot be (easily)
reordered without changing the semantics of the prograray Thmpute a difference
between malware and goodware dependency graphs, and showebalting graphs
can be used to detect malicious behaviors. Such graph mgtchin detect only the
exact behavioral patterns already seen in some samplepbstebt automatically gen-
eralize from training samples, i.e., does not attempt toapygroximate the training set
in order to detect similar, but not exactly the same behavior

Fredrikson et al. [13] propose an approach that focusessiimgilishing features,
rather than similarities among dependency graphs. Fisly tompute dependency
graphs at runtime, declaring two syscalls, sayands,, dependent, if the type and
value of the value returned tsy are equal to the type and value of some parameter of
s ands, was executed aftes;. They extract significant behaviors from such graphs
using structural leap mining, and then choose behaviotctrabe combined together
using concept analysis. In spite of a very coarse unsounaaippation of the depen-
dency graph and lack of automatic generalization, theyneff6 detection rate on
around 500 malware samples used in their experiments. Wiase@pproach as com-
plementary to ours: the tree-automata we infer from reakddpncy graphs obtained
through taint analysis could be combined with leap minind aancept analysis, to
improve their classification power.

Bonfante et al. [3] propose to unroll control-flow graphsaibéd through dynamic
analysis of binaries into trees. The obtained trees are fima-@rained than the syscall
dependency graphs. The finer level of granularity couldyattice, be less susceptible
to mimicry attacks (e.g., [33]), but is also easier to defeedugh control-flow graph
manipulations. The computed trees are then declared tebatitomata and the recog-
nizer is built by a union of such trees. Unlike inference, tingon does not generalize
from the training samples. The reported experiments irclaidarge set of malware
samples (over 10,000), but the entire set was used formigiand authors report only
false positives on a set of goodware (2653 samples). Thisgjiificult to estimate how
well their approach would work for malware detection andsification.

Taint Analysis. Dynamic taint analysis (DTA) [29] is a technique used todwlldata
flows in programs or whole systems at runtime. DTA can be seensingle-path sym-
bolic execution [21] over a very simple domain (set of tginlis premises are simple:
taint is a variable annotation introduced througimt sourcesit is propagated through
program execution according to som®@pagation ruleauntil it reaches aaint sink In
our case, for instance, taint sources are the syscallsubpgrameters, and taint sinks
are the input parameters.

As will be discussed in detail later, our implementationdsdd on the binary rewrit-
ing framework Pin [25] and uses the taint propagation rulesmafNewsome and Song
[29]. Since DTA must operate at the instruction-level gfanity, it poses a signifi-
cant runtime overhead. Our DTA implementation executedicgimns several thou-
sand times slower than the native execution. Our positidthatthe speed of the taint
analysis is less important than the speed of inference aadjnition. The taint analysis
can be run independently for each sample in parallel, thentigncy graph extraction
is linear with the length of each execution trace, and hardvisased information flow

tracking has been proposed (e.g., [30, 11]) as a potentiatico for improving per-
formance. In contrast, inference techniques have to psagéthe samples in order to
construct a single (or a small number of) recognizer(s). ¥erage anti-virus vendor
receives millions of new samples annually and the numbesjgiiized samples has been
steadily growing over the recent years. Thus, we believestteability of inference is
a more critical issue than the performance of the taint @msly

3 Notation and Terminology

In this section, we introduce the notation and terminologgdithroughout the paper.
First, we build up the basic formal machinery that allows asl¢fine tree automata.
Second, we introduce some notions that will help us defineots that can be intu-
itively seen as the tog levels of a tree. Later, we will show holroots induce an
equivalence relation used in our inference algorithm. Towahe end of this section,
we introducek-testabldanguages, less expressive than regular tree languadesiitsu
able for designing fast inference algorithms.

Let N be the set of natural numbers aNd the free monoid generated by with
concatenation-) as the operation and the empty striags the identity. The prefix
order< is defined asu < v for u,v € N* iff there existsw € N* such thatv = u-w.
Foru e N*,n € N, thelength|u] is defined inductivelyje| = 0,|u-n| = |u] + 1. We
say that a se§ is prefix-closedf u < vAve S=-uec S A tree domainis a finite
non-empty prefix-closed s€ c N* satisfying the following property: ifi-n € D then
vi<j<n.u-jeD.

A ranked alphabeis a finite set# associated with a finiteanking relation arityC
F x N. Define %, as a sef{f € .Z|(f,n) € arity}. The sefT (%) of termsover the
ranked alphabe# is the smallest set defined by:

1. #CT(9)
2.ifn>1, feZn ty,.. ., theT(F) thenf(ty,...,tn) €T (F)

Each term can be represented as a finite ordeeed: D — %, which is a mapping
from a tree domain into the ranked alphabet such'that D:

1. ift(u)e %y, n>1then{j|u-jeD}={1,...,n}

f 1
2. ift(uye Fothen{j|p-jeD}=0 AR
As usual in the tree automata literature (e.g., /g\ a T /11\ 12 1l3
[9]), we use the letterr (possibly with various in- a b b 111 112 131

dices) both to represent a tree as a mathematical

object and to name a relation that maps an ele-

ment of a tree domain to the corresponding alphgig. 1: An Example of a Treé

bet symbol. An example of a tree with its tree daand its Tree Domaindom(t) =

main is given in Figure 1. {1,11,11111212,13 131}, &#
The set of all positions in a particular treg f,g,h,a,b}, || t ||= 3, t(1) =

t, i.e., its domain, will be denotedom(t). A t/131=Dh.

subtreeof t rooted at positioru, denotedt /u is

defined as(t/u)(v) = t(u-v) and dom(t/u) =

fu

{v]u-vedom(t)}. We generalize thelom operator to sets as usualom(S) =
{dom(u) | u € S}. Theheightof a treet, denoted| t ||, is defined as:

|| t |lI= max({|u| such thau € dom(t)})

Let = = {& | f € Ui-0.%i } be a set of new nullary symbols such tiat .# = 0.
The = set will be used as a set pfaceholderssuch thaté; can be substituted only
with a treet whose position one (i.e., tHeead is labelled withf, i.e.,t(1) = f. Let
T (2 U.%) denote the set of trees over the ranked alphabet and plaegkofort,t’ €
T (ZU.%), we define thdink operatiortft’ by:

/ t(n) if t(n) = v (t(n) =& A #1'(1))
(tgt')(n) = {t’(z) if n=y-z t(y) = Et,(l)f, y € dom(t), ze dom(t')

For any two treed, t’ € T(.%), thetree quotient t't’ is defined by:
tW={t"eT(ZUuF) |t =t"5t}

The tree quotient operation can be extended to sets, as tist@k= {t*lt’ [t e S}.
For anyk > 0, definek-root of a tred as:

t if t(1) e %o
root (t) = ¢ é¢ if f=t(1),fecUso%, k=0
f(rooty_1(t1),...,root_1 (tn)) if t=f(ts,....ta), | t||>k>0

A finite deterministic bottom-up tree automat&DTA) is defined as a tupl®, #, 3, F),
whereQ is a finite set of states# is a ranked alphabef, C Q is the set of final states,
andd = |J; § is a set oftransition relationsdefined as followsd, : %9 — Q and for
n>0,0:(FnxQ") —=Q.

Thek-testable in the strict sengk-TSS) languages [22] are intuitively defined by
a set of tree patterns allowed to appear as the elements EHrtheage. The following
theorem is due to Lopez et al. [24]:

Theorem 1. Let.¥ C T(%). £ is a k-TSS iff for any treeg t, € T(%) such that
root (t1) = root (tz), when 1.2 # 0At, 1.2 # O then it follows thatf *.¥ =t, 1.2,

We choose Lbpez et al.'s theorem as a definitiok-01SS languages. Other defi-
nitions in the literature [14, 22] defineTSS languages in terms of three sets; leaves,
roots, and forks. Forks are roots that have at least onelpdtaer as a leaf. Theorem
1 shows that such more complex definitions are unnecessamitively, the theorem
says that within the language, any two subtrees that agrebeotopk levels are in-
terchangeable, meaning that a bottom-up tree automataio heasrember only a finite
amount of history. In the next section, we show that we camdefh equivalence re-
lation inducing an automaton accepting-a SS language using only our definition of
thek-root, as expected from Theorem 1.

4 Kk-Testable Tree Automata Inference

4.1 Congruence Relation

We begin with our definition of the equivalence relation tisatised to induce a state-
minimal automaton from a set of trees. The equivalenceioglaintuitively, compares
trees up tk levels deep, i.e., comparksgoots.

Definition 1 (Root Equivalence Relation~y). For some k> 0, two treesi,t, € T (%)
are root-equivalent with degree k, denotgd- t,, if rooty (t1) = root ().

Lemma 1. The~y relation is a congruence (monotonic equivalence) relatibfinite
index.

Proof (Sketch)lt is obvious that~y is an equivalence relation (reflexive, symmetric,
and transitive). Monotonicity can be proven by a simple tthn on the height of the
two trees being compared and tloet, definition.

The size of a-root is bounded by*, whereM = max({n | %, € F,.Z, # 0}).
Each positioruin thek-root's domain can be labelled with at m$t,ity () | Symbols.
Thus,rooty generates a finite number of equivalence classes, i.e.fiigtefindex.

As a consequence of Lemma 1, inference algorithms baseceandhequivalence
relation need not propagate congruences using union-fjdalgjorithms, as the root
equivalence relation is a congruence itself.

Definition 2 (~k-induced Automaton).Let T' C T(.%) be a finite set of finite trees.
The Ax(T') = (Q,.%,d,F) automaton induced by the root equivalence relatignis
defined as:

Q= {roo(t') |3t € T'. Juedom(T’) .t' =t/u}
F = {root(t) |[teT'}
oo(f)="f forfeF
on(f,rooty (t1),...,root (tn)) = rooty (f(t,...,tn)) forn>1f e %,

Corollary 1 (Containment). From the definition it follows thatk > 0. T’ C £ (A™(T")).
In other words, thev-induced automaton abstracts the set of treés T

Theorem 2. £ (A™k) is a k-TSS language.

Proof. We need to prove thaty, t, € T(), k> 0. 100t (t1) = root (tz) Aty 1.2 (A™k) #
0N LZ (A) £ 0=t 1.7 (AK) =t, 1.2 (A™%). Suppose the antecedent is true, but
the consequent is false, i.¢;,1.7 (A™) # t, L.Z (A™k). Then there must existsuch
thattiit; € £ (A™) andtit, £ (A™). Letube the position o€, 1), i.e.,(tit2) /u=ta.
Without loss of generality, létbe the tree with minimdl|. Necessarilyju| > 1, as oth-
erwiset{lf (A™) = 0. Letu=w-i, i € N. We prove thatft, must be inZ (A™k),
contradicting the initial assumption, by induction on thedth ofw.

Base case|W| = 1): Let (t(w))(1) = f, f € Z,. There are two subcases=1
andn > 1. Forn = 1, the contradiction immediately follows, a¥f,rooty(t1)) =

o(f,rooty (t2)). For then > 1 case, observe that for all positionsj such that &< j <n
andj #£i, (tity)/w- j = (tity)/w- j =t/w- j. From that observation andoty (t1) =
rooty (t;), it follows that

O ((thta/w)(1),root (titr/w- 1), ..., root (tity /w-n)
= O((tft2/w)(1),root (tit/w-1),... root (tita/w-n)

Induction step|fv] > 1): Letw=w -m, me N. From the induction hypothesis, we
know that for allm, rooty (tft; /w) = rooty (t§to/w), thus it follows:

O((thts/W)(1),root (tity/w - 1),...,root (tity/w - n))
= O((tita/W)(1), 100t (tito/W - 1),... root (tito/W - n))

Theorem 3 (Minimality). A~k is state-minimal.
Proof. Follows from Myhill-Nerode Theorem [20, pg. 72] and Lemma 1.

Minimality is not absolutely crucial for malware analysisa laboratory setting,
but it is important in practice, where antivirus tools campose a significant system
overhead and have to react promptly to infections.

Theorem 4 (Garcia [14])..Z (A1) C 2 (A™)

An important consequence of Garcia’s theorem is thaktiaetor can be used as an
abstraction knob — the smaller theactor, the more abstract the inferred automaton.
This tunability is particularly important in malware detien. One can’t hope to design
a classifier capable of perfect malware and goodware digimcT hus, tunability of the
false positive (goodware detected as malware) and falsgtimequndetected malware)
ratios is crucial. More abstract automata will result in méalse positives and fewer
false negatives.

4.2 Inference Algorithm

In this section, we present our inference algo- f f
rithm, but before proceeding with the algorithm, . N o '}
we discuss some practical aspects of inference /g\ \ /

from data-flow dependency graphs. As discussed 4 5, ' g 9

in Section 2, we use taint analysis to compute / \ /\ /\

data-flow dependencies among executed syscallsa b a b a b

at runtime. The result of that computation is not, _)

a tree, but an acyclic directed graph, i.e., a partiad- 2- Folding a Tree into a

order of syscalls ordered by the data-flow depelfiaximally-Shared Graph.

dency relation, and expansion of such a graph into

a tree could cause exponential blowup. Thus, it would be mongenient to have an

inference algorithm that operates directly on graphs,auitiexpanding them into trees.
Fortunately, such an algorithm is only slightly more coroated than the one that

operates on trees. In the first step, our implementatiompad common subexpression

elimination [1] on the dependency graph to eliminate syitaedundancies. The result

is a maximally-shared graph [2], i.e., an acyclic directeapt with shared common
subgraphs. Figure 2 illustrates how a tree can be foldediimb@ximally-shared graph.
In the second step, we compute a hash for daobot in the training set. The hash
is later used as a hash table key. Collisions are handledhaaiog [10], as usual,
but chaining is not described in the provided algorithmse st step of the inference
algorithm traverses the graph and folds it into a tree automasing the key computed
in the second phase to identify equival&mbots, which are mapped to the same state.
To simplify the exposition, we shall use the formal machyragveloped in Section
3 and present indexing and inference algorithms that workess. The extension to
maximally-shared graphs is trivial and explained brieftgta

input : Treet, factork
result : Key computed for every subtree bf

tmp<« hash(t(1))

foreachl <i < arity (t(1)) do
tst/i
tmp < tmpa® hash(ts.key)
ComputeKey(ts, k)

t.key«+ tmp

Algorithm 1: ComputeKey — Computingk-Root Keys (Hashes). The operator can
be any operator used to combine hashes, like bitwise exel@R. Thehash: .7 —
N function can be implemented as a string hash, returning tegrial hash of the
alphabet symbols.

Algorithm 1 traverses treiein postorder (children before the parent). Every subtree
has a fieldkeyassociated with its head, and the field is assumed to bellyitiero.

If the algorithm is called once, for trete the key of the head of each subtitgawill
consist only of the hash of the alphabet symbol labeting.e., hashts(1)). If the
algorithm is called twice (on the same tree), the key of thedhef each subtree will
include the hash of its own label and the labels of its chiideind so on. Thus, after
k calls toComputeKey, the key of each node will be equal to koot key. Note that
the temporary key, stored in thmp variable, has to be combined with the children’s
(k—1)-root key. The algorithm can be easily extended to operataaximally-shared
graphs, but has to track visited nodes and visit each nodeande in postorder. The
complexity of the algorithm ig7 (k- N), whereN is the size of the tree (or maximally-
shared graph). For multi-rooted graphs (or when procegssinlgiple trees), all roots
can be connected by creating a synthetic super-root of atsy@nd the algorithm is
then calleck times with the super-root as the first operand.

Algorithm 2 constructs tha™~k automaton. The tree (alternatively maximally-shared
graph) used for training is traversed in postorder, kindot of each subtree is used to
retrieve the representative for eash-induced equivalence class. Multi-rooted graphs
can be handled by introducing super-roots (as describexadjeAmortized complexity
is 0 (kN), whereN is the size of the tree (or maximally-shared graph).

input : Treet, factork, alphabet7
output: A~k = (Q, #,9,F)
foreachsubtreegin {t/u| ue dom(t)} traversed in postordeto
if rep[ts.keyl = 0 then
g« rooty (ts)
replts.key =g
Q+Qug
n <« arity (ts(1))

S« ((ts(l), rep|(ts/1).key, ..., rep[(ts/n).key), rep[ts.ke)})
F =F Urep[t.key
return (Q,.%#,0,F)

Algorithm 2: k-Testable Tree Automaton Inference. Thp: hash(rooty (T (.%))) —
root (T (%)) hash map contains representatives of equivalence clasdesed by
~. Collisions are handled via chaining (not shown).

5 Experimental Results

5.1 Benchmarks

For the experiments, we use two sets of benchmarks: the meaémal the goodware set.
The malware set comprises 2631 samples pre-classified &tardilies. Each family
contains 5-317 samples. We rely upon the classification ois@idorescu et al. [6]
and Fredrikson et al. [13]The classification was based on the reports from antivirus
tools. For a small subset of samples, we confirmed the quaflitfassification using
virustotal.com, a free malware classification service. Basv, without knowing the
internals of those antivirus tools and their classificati@uristics, we cannot evaluate
the quality of the classification provided to us. Our clasatfon experiments indicate
that the classification antivirus tools do might be somevattahoc. Table 1 shows the
statistics for every family.

The goodware set comprises 33 commonly used applicatiatshé@Reader, Apple
SW Update, Autoruns, Battle for Wesnoth, Chrome, Chromagdiirefox, Freecell,
Freeciv, Freeciv server, GIMP, Google Earth, Internet Brgal iTunes, Minesweeper,
MSN Messenger, Netcat port listen and scan, NetHack, NdteppenOffice Writer,
Outlook Express, Ping, 7-zip archive, Skype, Solitaires 8o, Task manager, Tux
Racer, uTorrent, VLC, Win. Media Player, and WordPad. Wenkzbthese applications
to be representative of software commonly found on the axeuaer's computer, from
a number of different vendors and with a diverse set of bemaviAlso, we used two
micro benchmarks: a HelloWorld program written in C and addey program. Micro-
benchmarks produce few small dependency graphs and therefght be potentially
more susceptible to be misidentified for malware.

2 The full set of malware contains 3136 samples, but we elitathaamples that were not exe-
cutable, executable but not analyzable with Pin (i.e., MSSDexecutables), broken executa-
bles, and those that were incompatible with the version aidafivs (XP) that we used for
experiments.

ID Family Name

Samples Avg. Nodes Trees MaxID Family Name

Samples Avg. Nodes Trees Max.

1 ABU.Banload 16 7.71 544 303 2125 Hupigon.AWQ 219 24.63 7225 3758 62
2 Agent 42 886 965 593 27 26 IRCBot.Sdbot 66 16.51 3358 1852 47
3 Agent.Small 15 8.88 950 588 2727 LdPinch 16 16.88 1765 1012 66

4 Allaple.RAHack 201 8.78 1225 761 4428 Lmir.LegMir 23 9.00 1112 667 28

5 Ardamax 25 6.21 144 69 1629 Mydoom 15 578 484 305 20

6 Bactera.VB 28 7.09 333 177 2830 Nilage.Lineage 24 9.64 1288 657 83
7 Banbra.Banker 52 13.97 1218 686 3B1 Games.Delf 11 844 971 632 22
8 Bancos.Banker 46 14.05 742 417 482 Games.LegMir 76 17.18 11892 8184 59
9 Banker 317 17.70 2952 1705 4333 Games.Mmorpg 19 7.00 654 478 25
10 Banker.Delf 20 1478 939 521 5034 OnLineGames 23 7.30 718 687 16
11 Banload.Banker 138 19.38 2370 1332 1535 Parite.Pate 71 1431 1420 816 36
12 BDH.Small 5 5.82 348 199 21 36 Plemood.Pupil 32 6.29 330 189 24
13 BGM.Delf 17 7.04 339 199 25 37 PolyCrypt.Swizzor 43 10.32 415 213 30
14 Bifrose.CEP 35 11.17 1190 698 5038 Prorat. AVW 40 23.47 1031 572 58

15 Bobax.Bobic 15 8.98 859 526 3039 Rbot.Sdbot 302 14.23 4484 2442 47
16 DKI.Poisonlvy 15 9.22 413 227 4040 SdBot 75 14.13 2361 1319 40

17 DNSChanger 22 12.62 874 483 3641 Small.Downloader 29 11.93 2192 1216 34
18 Downloader.Agent 13 12.89 1104 613 4912 Stration.Warezov 19 9.76 1682 1058 34
19 Downloader.Delf 22 10.76 1486 906 3243 Swizzor.Obfuscated 27 21.75 1405 770 49
20 Downloader.VB 17 10.80 516 266 2944 Viking.HLLP 32 784 512 315 24

21 Gaobot.Agobot 20 17.54 1812 1052 495 Virut 115 11.76 3149 1953 40

22 Gobot.Ghot 58 7.01 249 134 2246 VS.INService 17 11.42 307 178 37
23 Horst.CMQ 48 16.86 1030 541 4247 Zhelatin.ASH 53 12.14 1919 1146 39
24 Hupigon.ARR 33 23.58 2388 1244 5548 Zlob.Puper 64 15.16 2788 1647 90

Table 1: Malware Statistics per Family. All dependency psapere obtained by run-
ning each sample for 120sec in a controlled environment.iddéstifier that will be
used in later graphs is given in the first column. The thirdiood shows the number

of samples per family. Thévg. column shows the average height of the dependency
graphs across all the samples in the family. Noalescolumn shows the total number
of nodes in the dependency graph (after CSE). Tieescolumn shows the total num-
ber of different trees (i.e., roots of the dependency gragh)ss all the samples. The
Max column gives the maximal height of any tree in the family.

In behavioral malware detection, there is always a cordartietween the amount
of time the behavior is observed and the precision of theyarsalFor malware samples,
which are regularly small pieces of software, we set the diméo 120sec of running
in our environment. For goodware, we wanted to study the anphthe runtime on
the height and complexity of generated dependency grapidasthee impact of these
differences on the false positive rates. Thus, we ran goosigamples for both 120 and
800sec. To give some intuition of how that corresponds tatiteal native runtime, it
takes approximately 800s in our DTA analysis environmengftrobat Reader to open
a document and display a window.

We noticed a general tendency that detection and clas8ificegnd to correlate
positively with the average height of trees in samples ueetr&ining and testing. We
provide the average heights in Table 1.

5.2 Malware and Goodware Recognition

For our malware recognition experiments, we chose at rar&f¥ of the entire mal-
ware set for training, and used the rest and the entire gomdsed as test sets. Train-
ing with k = 4 took around 10sec for the entire set of 1315 training sasnled the
time required for analyzing each test sample was less theatintfing jitter (sub-second

range). All the experiments were performed in Ubuntu 10rQ4ning in a VMware
7.1.3 workstation, running on Win XP Pro and dual-core 2.2Ghtel machine with
4GB of RAM. In Figure 3a (resp. 3b), we show the results, usireggoodware depen-
dency graphs produced with an 800sec (resp. 120sec) timeout

The detection works as follows. We run all the trees (i.eots®f the dependency
graph) in each test sample against the inferred automatst, We sort the trees by
height, and then compute how many trees for each height aspted by the automa-
ton. Second, we score the sample according to the followingtfon:

_ acceptegd i
ZI total;

il

wherei ranges from 1 to the maximal height of any tree in the test sartbe last
column of Table 1)acceptedis the number of trees with heightaccepted by the
automaton, antbtal; is the total number of trees with heightThe test samples that
produce no syscall dependency graphs are assumed to hagesow.

The score can range from 0 to 1. Higher score signifies a hilikedihood the
sample is malicious. The ratio in the nominator of Eq. 1 istipliéd by the depth of
the tree to filter out the noise from shallow trees, often gateel by standard library
functions, that have very low classification power.

The results turned out to be slightly better with an 800seedtiut than with the
120sec timeout, as the average height of dependency graghslightly larger. As
expected, we found that with the risikgactor (and therefore decreasing level of ab-
straction), the capability of inferred tree automaton ttedemalware decreases, which
obviously indicates the value of generalization achievedugh tree automata infer-
ence. On the other hand, with the risikdactor, the detection becomes more precise
and therefore the false positive rate drops down. Thus,iihportant to find the right
level of abstraction. In our experiments, we determinetikha 4 was the optimal ab-
straction level. The desired ratio between false positaresnegatives can be adjusted
by selecting the score threshold. All samples scoring aki@sp. below) the threshold
are declared malware (resp. goodware). For examplé,fo4, timeout of 800sec, and
score 0.6, our approach reports two false positives (5%) +ef@h setup and NetHack,
and 270 false negatives (20%), which corresponds to an 8@8s¢timn rate. Fok = 4,
timeout of 800sec, and score 0.6, our approach reports ool false positive
(System info), and the same number of false negatives \ajtiha few malware samples
are somewhat closer to the threshold. Obviously, the lottgeebehavior is observed,
the better the classification.

It is interesting to notice that increasing the valu&kabove 4 does not make a sig-
nificant difference in (mis)detection rates. We ran the expents withk up to 10, but
do not show the results as they are essentially the same ks=fdr From our prelim-
inary analysis, it seems that generalization is effectibenva sequence of dependent
syscalls are executed within a loop. If two samples exedigesame loop body a dif-
ferent number of times, our approach will be able to deteatt tBhanging effectively
changes the window with which such loop bodies are detebedng the inference, it
seems like one size (&) does not fit all cases. We believe that by analyzing the repet
itiveness of patterns in dependency graphs, we could detectizes of loop bodies

Score=

1)

100{

80

[O Ay

k=
k=
| k=
k=

[O Ay

k=
k=
k=
k=

% of samples with scores above (below)
% of samples with scores above (below)

Fig. 3: Malware and Goodware Recognition. Timeouts for gatireg the dependency
graphs were 120sec for malware test and training sets anse8qfesp. 120sec) for
the goodware test set in the figure on the left (resp. right® fFaining set consists of
50% of the entire malware set, chosen at random. The tesbssists of the remaining
malware samples (curves rising from left to right), and tbedyware set (curves falling
from left to right). The rising curves represent the peragetof malware samples for
which the computed score wésssthan the corresponding value on tkexis. The
falling curves represent the percentage of goodware sanfiplevhich the score was
greaterthan the corresponding value on thexis. The figure shows curves for four
different values ok, there is essentially no difference between the cases Whed
andk = 5. For the rising curves, the lowest curve is kot 2, the next higher one for
k = 3, and the two highest ones for the remaining cases. For tliegfaurves, the
ordering is reversed. The optimal score for distinguishimagjware from goodware is
the lowest intersection of the rising and falling curvestfoe samek.

much more accurately, and adjust thfactor according to the size of the body, which
should in turn improve the generalization capabilitieshef inference algorithm. Many
other improvements of our work are possible, as discussed la

5.3 Malware Classification

We were wondering what is the classification power of inféaatomata, so we did the
following experiment. We divided at random each family it@ining and test sets of
equal size. For each training set, we inferred a family-8jgdcee automaton. For each
test set, we read the dependency graphs for all the samptee Bet, and compute a
single dependency graph, which is then analyzed with thexiied tree automaton. The
scores are computed according to Equation 1, with3. The only difference from the
experiment done in the previous section is that the scoremgpated for the entire test
set, not individual samples in the set. Results are showigur€ 4.

The pronounced diagonal in Figure 4 shows that our inferaédmata clearly have
a significant classification power and could be used to dlagsalware into families.
There is some noise as well. The noise could be attributedaoynfactors: over-
generalization, over- and under-tainting of our DTA [5, lififufficiently large depen-

dency graphs, frequently used dynamic libraries that aaeeshby many applications
and malware, and a somewhat ad-hoc pre-classification tanrus tools.

6 Limitations

There are several inher-
ent limitations of our
approach. An attacker : :
could try to mask syscall #| ST e e Sy e
dependencies so as to S T .
be similar (or the same) 3 : = .
as those of benign ap- 35 . oL@l i
plications. Thisclass of §|.. ..e... T
attacks are known as | = REEEL R
mimicry attacks[33]. % v , o

All intrusion and be- 3| el '
havioral malware de- j| ‘oo . i@
tection approaches are /. . v6e® e 1 5: uifi.e e b di00e d-02
susceptible to mimicry & : : ' o

attacks. One way to | 0de’ o e +ie.

make this harder for the . Diigiinionodiiofa sinitan
attacker, is to make the o575 e 7 v oo mi i mimmaa e 205 051 25 095057 8 40288 e 8

analysis more precise, o _
as will be discussed in Fig. 4: Malware Classification Results. They) axis repre-

the following section. sents the training (test) sets. The size of the shaded circle
Triggering interest- corresponds to the score computed by Eq. 1.

ing malware behavior

is another challenge.

Some behaviors could be triggered only under certain clomdit(date, web site vis-
ited, choice of the default language, users’ actions,Mgser et al. [28, 4] proposed
DART [16] as a plausible approach for detecting rarely eitbibbehaviors.

As discussed earlier, our DTA environment slows the exeouteveral thousand
times, which is obviously too expensive for real-time détet A lot of work on mal-
ware analysis is done in the lab setting, where this is nogjaifsiant constraint, but
efficiency obviously has to be improved if taint-analysisdé@ approaches are ever to
be broadly used for malware detection. Hardware taintyaighccelerators are a viable
option [30, 11], but we also expect we could probably achmverder of magnitude
speedup of our DTA environment with a very careful optimizat

7 Conclusions and Future Work

In this paper, we presented a novel approach to detectiely likalicious behaviors and
malware classification based on tree automata inferencehdiged that inference, un-
like simple matching of dependency graphs, does geneffatirethe learned patterns

and therefore improves detection of yet unseen polymorphieare samples. We pro-
posed an improvel-testable tree automata inference algorithm and showedthew
k factor can be used as a knob to tune the abstraction levelurmxperiments, our
approach detects 80% of the previously unseen polymorphiwane samples, with a
5% false positive rate, measured on a diverse set of benjgjicafons.

There are many directions for further improvements. Thesification power of
our approach could be improved by a more precise analysissoafi parameters (e.g.,
using their actual values in the analysis), by dynamicadgdting the best value of the
factor in order to match the size of loop bodies that prodattems in the dependency
graphs, by using goodware dependency graphs as negatingksaduring training,
and by combining our approach with the leap mining appro&sh [

Another interesting direction is inference of more expressree languages. In-
ference of more expressive languages might handle reppategtns more precisely,
generalizing only as much as needed to fold a repeatablerpéttto a loop in the tree
automaton. Further development of similar methods cou lasbroad impact in secu-
rity, forensics, detection of code theft, and perhaps egstirty and verification, as the
inferred automata can be seen as high-level abstractigm®gfam’s behavior.

Acknowledgments

We are grateful to Matt Fredrikson and Somesh Jha for sh#r@iglibrary of classified

malware with us. We would especially like to thank Lorenzarfiggoni, who wrote the

libwst library [26] for extracting and parsing argumentdihdows’s system calls. We
also thank reviewers for their insightful and constructteenments.

References

1. Aho, AV, Sethi, R., Ullman, J.D.: Compilers: principletechniques, and tools. Addison-
Wesley Longman Publishing Co., Inc., Boston, Massactsisd8A (1986)

2. Babi¢, D.: Exploiting Structure for Scalable Softwarrification. Ph.D. thesis, University of
British Columbia, Vancouver, Canada (2008)

3. Bonfante, G., Kaczmarek, M., Marion, J.Y.: Architectofea morphological malware detec-
tor. Journal in Computer Virology 5, 263-270 (2009)

4. Brumley, D., Hartwig, C., Zhenkai Liang, J.N., Song, Din,YH.: Botnet Detection Counter-
ing the Largest Security Threat, Advances in Informationusigy, vol. 36, chap. Automati-
cally Identifying Trigger-based Behavior in Malware, pp-88. Springer (2008)

5. Chow, J., Pfaff, B., Garfinkel, T., Christopher, K., Rdsieim, M.: Understanding data lifetime
via whole system simulation. In: Proc. of 13th USENIX Segu8ymp. (2004)

6. Christodorescu, M., Jha, S.: Testing malware detedtmr£SSTA04: Proc. of the 2004 ACM
SIGSOFT Int. Symp. on Software Testing and Analysis. pp434ACM (2004)

7. Christodorescu, M., Jha, S., Kruegel, C.: Mining speaffams of malicious behavior. In:
Proc. of the the 6th joint meeting of the European softwagiraering conf. and the ACM
SIGSOFT symp. on The foundations of software engineeripg5pl4. ACM (2007)

8. Christodorescu, M., Jha, S., Seshia, S.A., Song, D.,BryAE.: Semantics-aware malware
detection. In: SP’05: Proc. of the 2005 IEEE Symp. on Segaritd Privacy. pp. 32-46. IEEE
Comp. Soc. (2005)

9. Comon, H., Dauchet, M., Gilleron, R., Ldding, C., Jacgaed, F., Lugiez, D., Tison, S.,
Tommasi, M.: Tree automata techniques and applicatior®7(20

10. Cormen, T.H., Leiserson, C.E., Rivest, R.L., SteinJi@roduction to Algorithms. The MIT
Press, 2nd edn. (2001)

11. Crandall, J., Chong, F.: Minos: Control data attack @néen orthogonal to memory model.
In: In the Proc. of the 37th Int. Symp. on Microarchitectysp. 221-232. IEEE (2005)

12. Forrest, S., Hofmeyr, S.A., Somayaji, A., LongstafA.TA sense of self for unix processes.
In: Proc. of the 1996 IEEE Symp. on Security and Privacy. @0-129. IEEE Comp. Soc.

1996

13.(Fred)rikson, M., Jha, S., Christodorescu, M., Sailer,Y&n, X.: Synthesizing near-optimal
malware specifications from suspicious behaviors. In: Rubthe 2010 IEEE Symp. on Se-
curity and Privacy. pp. 45-60. IEEE Comp. Soc. (2010)

14. Garcia, P.: Learningtestable tree sets from positive data. Tech. rep., Dept. $yform.
Comput., Univ. Politecnica Valencia, Valencia, Spain @09

15. Garcia, P., Vidal, E.: Inference of k-testable langsaig the strict sense and application to
syntactic pattern recognition. IEEE Trans. Pattern AnalcM Intell. 12, 920-925 (1990)

16. Godefroid, P., Klarlund, N., Sen, K.: DART: directed@utited random testing. In: Proc. of
the ACM SIGPLAN Conf. on Prog. Lang. Design and Impl. pp. 2233. ACM (2005)

17. Gold, E.M.: Complexity of automaton identification frapiven data. Information and Con-
trol 37(3), 302320 (1978)

18. Holzer, A., Kinder, J., Veith, H.: Using verification tewlogy to specify and detect malware.
LNCS, vol. 4739, pp. 497-504. Springer (2007)

19. Kang, M.G., McCamant, S., Poosankam, P., Song, D.: DTB¥aamic taint analysis with
targeted control-flow propagation. In: Proc. of the 18th AalrNetwork and Distributed Sys-
tem Security Symp. San Diego, CA (2011)

20. Khoussainov, B., Nerode, A.: Automata Theory and Itsl&pgions. Birkhauser (2001)

21. King, J.C.: Symbolic execution and program testing. @oraf the ACM 19(7), 385-394

1976

22.(KnUL)JtiIa, T.: Inference ok-testable tree languages. In: Bunke, H. (ed.) AdvancesrimcSt
tural and Syntactic Pattern Recognition: Proc. of the Indrk&hop, pp. 109-120. World Sci-
entific (1993)

23. Kolbitsch, C., Milani, P., Kruegel, C., Kirda, E., Zhoxi,, Wang, X.: Effective and efficient
malware detection at the end host. In: The 18th USENIX Sgc8gmp. (2009)

24. Lopez, D., Sempere, J.M., Garcia, P.: Inference adrsthle tree languages. |IEEE Transac-
tions on Systems, Man, and Cybernetics, Part B 34(4), 1688-12004)

25. Luk, C., Cohn, R., Muth, R., Patil, H., Klauser, A., Lown&., Wallace, S., Reddi, V., Hazel-
wood, K.: Pin: building customized program analysis tooigwlynamic instrumentation. In:
Proc. of the 2005 ACM SIGPLAN Conf. on Prog. lang. design angli pp. 190-200. ACM

2005

26.(Mart)ignoni, L., Paleari, R.: The libwst library (a partt WUSSTrace) (2010),
http://code.google.com/p/wusstrace/

27. Matrosov, A., Rodionov, E., Harley, D., Malcho, J.: Stakunder the microscope. Tech.
rep., Eset (2010)

28. Moser, A., Kruegel, C., Kirda, E.: Exploring multipleesution paths for malware analy-
sis. In: SP’07: Proc. of the 2007 IEEE Symp. on Security ariday. pp. 231-245. IEEE
Computer Society, (2007)

29. Newsome, J., Song, D.: Dynamic Taint Analysis: Autom&tetection, Analysis, and Sig-
nature Generation of Exploit Attacks on Commodity Softwdne Proc. of the Network and
Distributed Systems Security Symp. (2005)

30. Suh, G., Lee, J., Zhang, D., Devadas, S.: Secure progfecutéon via dynamic information
flow tracking. ACM SIGOPS Operating Systems Review 38(5);,985(2004)

31. Symantec: Symantec global internet security threatrtefrends for 2009. volume XV.
Tech. rep., Symantec (April 2010)

32. Wagner, D., Dean, D.: Intrusion detection via staticlgsis. In: Proc. of the 2001 IEEE
Symp. on Security and Privacy. p. 156. IEEE Computer So¢#001)

33. Wagner, D., Soto, P.: Mimicry attacks on host-based&nn detection systems. In: Proc. of
the 9th ACM Conf. on Comp. and Comm. Security. pp. 255—-264MA2002)

34. You, |, Yim, K.: Malware Obfuscation Techniques: A Br&urvey. Int. Conf. on Broadband,
Wireless Computing, Communication and Applications p-200 (2010)

35. Zalcstein, Y.: Locally testable languages. J. Compyst.Sci. 6(2), 151-167 (1972)

