
Satisfiability

Suggested Format

Last revision: May 8, 1993

This paper outlines a suggested format for satisfiability problems. It is not

yet the “official” DIMACS graph format. If you have comments on this or

other formats or you have information you think should be included, please

send a note to challenge@dimacs.rutgers.edu.

1 Introduction

One purpose of the DIMACS Challenge is to ease the effort required to test
and compare algorithms and heuristics by providing a common testbed of
instances and analysis tools. To facilitate this effort, a standard format must
be chosen for the problems addressed. This document outlines two formats
for satisfiability problems. The purpose of these formats is to allow quick
conversion from one format to another while still being reasonably effective
formats directly.

Two formats were chosen to reflect the need for both a specialized format
for satisfiability problems in conjunctive normal form and for a general format
able to handle all types of satisfiability problems. These formats will be
referred to as CNF format and SAT format respectively.

2 File Formats for Satisfiability Problems

This section describes a standard file format for graph inputs and outputs.
There is no requirement that participants follow these specifications; however,

1



compatible implementations will be able to make full use of DIMACS support
tools.

Participants are welcome to develop translation programs to convert in-
stances to and from more convenient, or more compact, representations; the
Unix awk facility is recommended as especially suitable for this task.

All files contain ASCII characters. Input and output files contain several
types of lines, described below. A line is terminated with an end-of-line
character. Fields in each line are separated by at least one blank space.

2.1 CNF format

A satisfiability problem in conjunctive normal form consists of a the conjunc-
tion of a number of clauses, where is clause is a disjunction of a number of
variables or their negations. If we let xi represent variables that can assume
only the values true or false, then a sample formula in conjunctive normal
form would be

(x1 ∨ x3 ∨ x̄4) ∧ (x4) ∧ (x2 ∨ x̄3)

where ∨ represents the or boolean connective, ∧ represents and and x̄i is the
negation of xi.

Given a set of clauses C1, C2, . . . , Cm on the variables x1, x2, . . . , xn, the
satisfiability problem is to determine if the formula

C1 ∧ C2 ∧ . . . ∧ Cm

is satisfiable. That is, is there an assignment of values to the variables so
that the above formula evaluates to true. Clearly, this requires that each Cj

evaluate to true.
The maximum satisfiability problem is to find an assignment of values to

the variables so as to have the maximum number of Cj evaluate to true.
To represent an instance of such problems, we will create an input file

that contains all of the information needed to define a satisfiability problem
or a maximum satisfiability problem. This file will be an ASCII file consisting
of a two major sections: the preamble and the clauses.

The Preamble. The preamble contains information about the instance.
This information is contained in lines. Each line begins with a single char-

2



acter (followed by a space) that determines the type of line. These types are
as follows:

• Comments. Comment lines give human-readable information about
the file and are ignored by programs. Comment lines appear at the
beginning of the preamble. Each comment line begins with a lower-
case character c.

c This is an example of a comment line.

• Problem line. There is one problem line per input file. The prob-
lem line must appear before any node or arc descriptor lines. For cnf
instances, the problem line has the following format.

p FORMAT VARIABLES CLAUSES

The lower-case character p signifies that this is the problem line. The
FORMAT field allows programs to determine the format that will be
expected, and should contain the word “cnf”. The VARIABLES field
contains an integer value specifying n, the number of variables in the
instance. The CLAUSES field contains an integer value specifying m, the
number of clauses in the instance. This line must occur as the last line
of the preamble.

The Clauses. The clauses appear immediately after the problem line.
The variables are assumed to be numbered from 1 up to n. It is not necessary
that every variable appear in an instance. Each clause will be represented by
a sequence of numbers, each separated by either a space, a tab, or a newline
character. The non–negated version of a variable i is represented by i; the
negated version is represented by −i.

Each clauses is terminated by the value 0. Unlike many formats that
represent the end of a clause by a new–line character, this format allows
clauses to be on multiple lines.

Example. Using the example

(x1 ∨ x3 ∨ x̄4) ∧ (x4) ∧ (x2 ∨ x̄3)

a possible input file would be

3



c Example CNF format file

c

p cnf 4 3

1 3 -4 0

4 0 2

-3

2.2 SAT format

Conjunctive normal form is not the only natural encoding for satisfiability
problems. There are other encodings that lead to interesting satisfiability
problems but whose translation into CNF unnecessarily increases the size of
the problem. To allow formulation of such instances, as well as providing
an alternative form for CNF format, the following format is also supported.
This file consists also of a preamble and a formula section.

The Preamble. The preamble contains information about the instance.
This information is contained in lines. Each line begins with a single char-
acter (followed by a space) that determines the type of line. These types are
as follows:

• Comments. Comment lines give human-readable information about
the file and are ignored by programs. Comment lines appear at the
beginning of the preamble. Each comment line begins with a lower-
case character c.

c This is an example of a comment line.

• Problem line. There is one problem line per input file. The problem
line must appear before any node or arc descriptor lines. For network
instances, the problem line has the following format.

p FORMAT VARIABLES

The lower-case character p signifies that this is the problem line. The
FORMAT field allows programs to determine the format that will be
expected, and should contain the word “sat”. The VARIABLES field
contains an integer value specifying n, the number of variables in the
instance. This line must occur as the last line of the preamble.

4



The Formula. Immediately after the problem statement, the formula
appears. This formula consists of one or more lines, containing the formula
to be satisfied. The variables are represented by the numbers 1 through n.
Negation of a variable i is represented by −i. Valid formulae are represented
by the following rules:

1. i and −i are formula for all i.

2. If f is a valid formula, so is (f).

3. If f is a valid formula, so is −(f).

4. If f1, f2, . . . , fk are valid formulas, so is ∗(f1 f2 . . . fk).

5. If f1, f2, . . . , fk are valid formulas, so is +(f1 f2 . . . fk).

White space separating pieces of a formula can either be spaces, tabs, or
newline characters. Whitespace is not required where the tokens are unam-
biguous without it. In particular, both (1 –2) and (1-2) are valid formulae.
∗() and +() are valid and interpreted as TRUE and FALSE respectively.

The “∗” operator represents the and operation, the “+” represents the or

operation, and “−” represents negation.
The formula represented must be of the form (f), for a valid formula f .

Example. For the formula

(x1 ∨ x3 ∨ x̄4) ∧ (x4) ∧ (x2 ∨ x̄3)

a sample input file is

c Sample SAT format

c

p sat 4

(*(+(1 3 -4)

+(4)

+(2 3)))

5



2.3 Additions and Expansions

The purpose of the standard format is to have a common language for ex-
pressing problems. It may be that the formats chosen are not rich enough for
some types of problems. If you would like to suggest any expansions, please
contact the Challenge.

The following extensions have been defined:
XOR Format. Problem type is satx. New operator “xor” is defined

with the same syntax as “+” OR “*”. xor(f1f2 . . . fn) evaluates to true if
and only if an odd number of f1, f2, . . . , fn evaluate to true. xor() evaluates
to false.

EQUAL Format. Problem type is sate. New operator “=” with syntax
like “+” or “*”. = (f1f2 . . . fn) evaluates to true if and only if f1, f2, . . . , fn

are either all true or all false. = () evaluates to true.
XOR–EQUAL Format. Combines the above with problem type satex.

2.4 Output Files

Every algorithm or heuristic should create an output file. This output file
should consist of one or more of the following lines, depending on the type
of algorithm and problem being solved.

• Comments. Comment lines give human-readable information about
the file and are ignored by programs. Comment lines can appear any-
where in the file. Each comment line begins with a lower-case character
c. Note that comment lines can be used to provide solution information
not otherwise available (i.e. computation time, number of calculations).

c This is an example of a comment line.

• Solution Line

s TYPE SOLUTION VARIABLES CLAUSES

s TYPE SOLUTION VARIABLES

The lower-case character s signifies that this is a solution line. The TYPE
field denotes the type of solution contained in the file. This should be

6



one of the following strings: “max”, for solving the maximum satisfia-
bility problem (whose input file format was necessarily “cnf”), or the
FORMAT string from the Problem Line, for solving (some form of) the
satisfiability problem. In particular, for CNF satisfiability, the string
is “cnf”. See Problem Line description for other possibilities.

The SOLUTION field contains an integer corresponding to the solution
value. For maximum satisfiability, this should be the number of clauses
satisfied; for satisfiability, this should be “1” if the formula is satisfiable,
0 if the formula is unsatisfiable, and -1 if no decision was reached.

The VARIABLES field contains the same integer that was in the VARI-
ABLES field of the problem line. The CLAUSES field contains the same
integer that was in the CLAUSES field of the problem line, applicable
to “cnf” format only.

Notice that a Solution Line “of last resort” can be appended to the
output file by a Unix shell script in which the program is executing, in
the event that the program dies prematurely.

• Timing Line

The Timing Line is optional, but is recommended. Its purpose is to
standardize the reporting of timing information for ease of statistical
analysis. It may appear anywhere in the file, and it repeats all of the
information on the solution line for simplicity of extraction.

t TYPE SOLUTION VARIABLES CLAUSES CPUSECS MEASURE1 ...

The lower-case character t signifies that this is a timing line. The TYPE,
SOLUTION, VARIABLES, and CLAUSES fields are identical to the solution
line, except that the CLAUSES field is 0 when not applicable.

The CPUSECS field is a floating point number designating the number
of CPU seconds used during the solution (or attempted solution). All
numbers should be understandable by awk. A number without a deci-
mal point is acceptable as “floating point”.

Remaining fields are floating point numbers providing alternative mea-
sures of performance that are “algorithmic” and reproducible: that
is, these numbers should come out the same under different system

7



loads, and on different architectures. MEASURE1 is required (just print
0 to abstain), and is what the application thinks is the most signifi-
cant measure of performance, such as number of nodes in search space,
number of variable-assignment changes, etc.

Additional measures report other interesting performance data, de-
pending on the application. Exceptions to the rule of reproducibility
may be made for additional measures: for example, memory require-
ment might vary by architecture.

Notice that a Timing Line “of last resort” can be appended to the
output file by a Unix shell script in which the program is executing.

• Variable Line

v V

The lower-case character v signifies that this is a variable line. The
value V is either a positive value i, which means that i should be set
true or a negative value −i, implying it should be set false.

• Clause Satisfaction Line

s C

This line, useful only for maximum satisfiability, denotes whether a
particular clause is satisfied or not. The lower-case character s signifies
that this is a clause line. The value C is either a positive value i, which
means that clause i is satisified by the solution, or a negative value −i,
implying it is not.

3 Implementation at DIMACS.

CNF format files will generally have a .cnf extension, while SAT format files
will have a .sat extension.

8


